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Small rigid spherical particles are suspended in fluid, and material is being transferred 
from the surface of each sphere by convection anddiffusion. The fluid is in statistically 
steady turbulent motion maintained by some stirring device. It is assumed that the 
PBclet number of the flow around a particle is large compared with unity, SO that a 
concentration boundary layer exists at the particle surface, and that the Reynolds 
number of the flow around the particle is sufficiently small for the velocity distribution 
near the particle surface to  be given by the Stokes equations. 

The flow around a particle is a superposition of (a) a streaming flow due to a trans- 
lational motion of the particle relative to the fluid with a velocity proportional to the 
density difference, and ( b )  a flow due to the velocity gradient in the ambient fluid. An 
expression for the mean transfer rate which is asymptotically exact for large PBclet 
numbers is obtained in terms of statistical parameters of these two superposed flow 
fields. As a consequence of the partial suppression of convective transfer by particle 
rotation, the only relevant parameters are the mean translational velocity of the 
particle in the direction of the ambient vorticity vector and the mean ambient rate 
of extension in the direction of the ambient vorticity. The former is shown to be zero 
in common turbulent flow fields, and an expression for the latter in terms of the 
mean dissipation rate tz is obtained from the equilibrium theory of the small-scale 
components of the turbulence. The final non-dimensional expression for the transfer 
rate is 0.55(a2e*/~vi)*, where a is the particle radius. This is found to agree well with 
some previously published sets of data for values of u 2 d / d  less than lo2. 

1. Introduction 
Control and prediction of the rate at  which mass of some diffusible quantity is 

transferred across a phase boundary are common requirements in chemical engineering. 
There are many situations in which a high rate of transfer is preferred, and this leads 
naturally to manufacture of one of the phases in the form of numerous small particles. 
The particles with their large interfacial area should of course remain in contact with 
the disperse phase, which we shall suppose to be fluid, and this is achieved when the 
particles are sufficiently small to remain in suspension in the fluid. The transfer rate 
can then be made even larger by stirring the fluid. The fluid motion in the stirred tanks 
used in laboratories and in industry is usually turbulent. The underlying basic problem 
in such a case is thus the determination of the average rate of transfer of mass across 
the surface of a small particle immersed in fluid whose motion relative to the particle 
is fluctuating and given in statistical terms. This is the problem to be addressed 
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theoreticaIly in the present paper, which is a sequel to a previous investigaton (Bat- 
chelor 1979) of the rate of mass transfer from a particle immersed in fluid with a 
velocity distribution relative to the particle which is steady. 

Mathematically we shall need to  consider the solution of the equation 

for the concentration C in the fluid, with the inner boundary condition taken, as in 
the previous paper, to be 

C = C, (const.) at  the particle surface A .  

Turbulent mixing times are relatively short, and so it is appropriate to take the outer 
boundary condition as 

C --f C, far from the particle surface. 

In some practical set-ups the ambient concentration level might rise slowly with time, 
but we shall assume C,, to be constant. The instantaneous rate of transfer from the 
particle surface is 

Q = - K /  n.VCdA,  
A 

of which the non-dimensional measure is the Nusselt number 

(1.2) 
Q 

47raK(C, - C,)’ 
N =  

where a is a particle dimension. The fluid velocity u in (1 .1 )  depends on both the particle 
density and the turbulent flow, and will be described specifically in $2. 

We shall make the following assumptions about the conditions in the stirred tank. 
(a )  The particles are rigid and spherical, with radius a, and are far enough apart to 

have no hydrodynamic interaction. This is primarily an assumption of convenience, 
to make possible the analytical determination of the velocity and concentration dis- 
tributions in the neighbourhood of a particle. It applies with fair accuracy to many 
practical cases. 

( b )  The PBclet number of the motion relative to a particle is large compared with 
unity. PQclet numbers in laboratory and industrial stirred tanks are in fact usually 
large, as we shall see later when comparing the theoretical result with the available 
data, as a consequence of the smallness of the molecular diffusivity of most solutes 
in liquid. Analytically the assumption is a great help, because it implies the existence 
of a thin concentration boundary layer at the particle surface. 

(c) The Reynolds number of the motion in the neighbourhood of a particle is small 
compared with unity. One of the purposes of this assumption is to enable us to  use the 
Stokes equations for the calculation of the velocity distribution near a particle. 
However, the velocity distribution, and hence also the rate of mass transfer from the 
particle surface, varies rather slowly with Reynolds number for values of this number 
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below unity,t and the mass transfer results obtained herein may be expected to apply 
approximately when the Reynolds number of the motion near a particle is of order 
unity. The restrictiveness of assumption ( c )  is discussed at  the end of the paper. 

Assumptions ( b )  and ( c )  together imply tha t  the Prandtl or Schmidt number for the 
fluid and the diffusible quantity is large. Schmidt numbers for solutes in liquid are 
in fact typically large; for example V / K  = 1.0 x lo3 for NaCl in water, 2.6 x lo3 for 
ammonium nitrate in ethanol, and 300-600 for anion exchange resins in aqueous acids. 
Note the implication of assumption ( c )  that the gradient of velocity is approximately 
constant across the thin concentration boundary layer. 

( d )  The turbulent motion in the fluid containing the particles is statistically steady, 
although not necessarily homogeneous. It follows that in most set-ups, including a 
stirred tank and flow through cylindrical tubes and flow in open cylindrical channels, 
a particle ‘samples’ different parts of the flow field in turn and the fluid velocity in 
the neighbourhood of a particle, and relative to it, is statistically steady. 

Note that no assumption is being made about the relative density of the particles 
and the fluid, except of course that the particles must remain suspended in the  fluid 
for a time sufficiently long to allow an appreciable transfer of mass between the two 
phases to occur. 

The above assumptions are all fairly conventional, and do not specify a new problem. 
But hitherto no firm theoretical results have been put forward. Those who have been 
concerned with the reduction of observational data on the transfer from particles 
in turbulent fluid have usually looked for a match of the data with either one of two 
alternative power-law forms of the relation between the non-dimensional average mass 
transfer rate N and the particle PQclet number P. One of these relations, viz. N cc Pi, 
has been regarded as suggested by the available asymptotic (P-too) expression for the 
mass transfer rate for a particle held in a steady uniform stream (and if the velocity 
in the fluid in which the particle is immersed were steady and varied linearly with 
position, the transfer rate would still vary as Pi - see Batchelor 1979). The other, 
viz. N cc P*, is a consequence of a surface-renewal model of the transfer mechanism 
according to which the transfer from the particle surface takes place by diffusion into 
stationary fluid for a certain time characteristic of the turbulent flow and then the 
surface layer is suddenly replaced by pure solvent and the diffusion begins again. The 
steady-rate relation is exact but is not directly applicable to a particle suspended 
in turbulent fluid, whereas the surface-renewal relation is derived from a very crude 
model; neither of the underlying concepts is satisfactory as a theoretical basis for the 
analysis of data. 

In the following pages we shall see that the average rate of transfer from the surface 
of a particle immersed in turbulent fluid can be shown rigorously to be proportional 
to fl and that, rather remarkably for aproblem involvingrandom velocity fluctuations, 
the proportionality constant can be determined fully with the aid of the equilibrium 

t Calculations by Ryskin & Fishbein (1976) show that, for a rigid sphere in steady transle- 
tional motion with velocity U ,  through fluid at rest a t  infinity, the rate of mass transfer from 
the sphere a t  U ,  a/v = 1 isonly 7 yo greater than a t  zero Reynolds number, for a given large PBclet 
number. Another, less directly relevant, result obtained by Ryskin (1980) is that the extra rate 
of energy dissipation caused by the presence of a rigid sphere in an axisymmetric steady pure 
straining motion with axial rate of extension E is only about 1 % greater when aPE/v = 0.5 
than at zero Reynolds number. 
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theory for the small-scale components of the turbulent flow and a knowledge of one 
parameter of the turbulence. 

2. The fluid motion near a particle 
The rate of transfer of mass from the particle surface is determined by the velocity 

distribution in the fluid near the particle. Only the fluid velocity relative to the particle 
is relevant. The fluid motion in the neighbourhood of the particle may be due partly 
to movement of the particle through the fluid under the action of an applied force, and 
partly to the existence of an ambient motion of the fluid (i.e. a motion of the fluid in 
the absence of the particle). These two sources make independent contributions to the 
flow field (although not to the mass transfer) when the Reynolds number of the 
local fluid motion is small. 

Consider first the relative translational motion of the particle and the surrounding 
fluid. The gravitational force on a particle, after allowance for buoyancy, is 

4 Z.rra3@p-Pf)9, 

where p p  and pf are the density of the particle and the fluid respectively. Inasmuch as 
the element of fluid containing the particle may be accelerating, as it takes part in the 
turbulent motion in the tank, there is in addition an effective force on the particle 
relative to axes moving with this element which also is proportional to p p  -pf. These 
two forces together, one of which is steady and one fluctuating, cause a translational 
motion of the particle relative to the fluid which is resisted by viscous stresses. Thus 
one contribution to the fluidmotion near the particle, and relative to it, is the flow field 
due to the particle being held stationary in a uniform stream with velocity - V(t) say; 
and IVI is proportional to pp - p f .  The disturbance velocity at  position X in the fluid 
resulting from the presence of the rigid spherical particle with centre a t  Y is then 
the familiar solution of the Stokes equation : 

wherex = X - Y and 1x1 = r ,  the superscript (T) indicates translational motion, and 1 
denotes the unit second-rank tensor. 

Consider now the contribution to the fluid motion near the particle which is due to 
the ambient flow field and which exists even when pp = pf. The ambient fluid velocity 
U at point X in the neighbourhood of the instantaneous position Y of the particle 
centre may be represented approximately by the Taylor series 

U(X) = U(Y) + (X - Y) . {VU)X,y + . . . . (2.2) 

The statistical properties of the velocity gradient tensor VU and the higher-order 
spatial derivatives are among the small-scale features of the turbulent motion, and 
so are determined by the two parameters E and v( = p/pf) ,  where E is the localmean rate 
of dissipation of mechanical energy, according to the Kolmogoroff equilibrium theory. 
The ratio of two consecutive spatial derivatives is thus a length of order ( v3 /e ) ) ,  
statistically speaking, and so for values of JX-  YI which are a few times the particle 
radius a the ratio of the further unwritten terms on the right-hand side of ( 2 . 2 )  to the 
second term is of order aet /v$.  This ratio can also be written as (a2E/v)*,  where E is 
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a measure of the mean local rate of extension in the ambient flow field, which is 
recognizable as the square root of a Reynolds number of the flow about a particle 
immersed in an ambient pure straining motion. The assumption of a small Reynolds 
number of the flow near the particle, which we have already made, thus implies that 
the particle dimension is small compared with the smallest eddy size in the turbulent 
flow (and equally that a2/v is small compared with the time scale of the small eddies) 
and that the fluid velocity in the ambient flow field is approximately a linear function 
of position. 

The velocity gradient tensor can be decomposed into its symmetrical and unsym- 
metrical parts: 

VU = E+SZ, 

where the antisymmetric part SZ represents a rigid-body rotation with angular 
velocity QO and o is the ambient vorticity. A couple-free rigid sphere tends to take up 
the same angular velocity as that in the ambient flow field, and the relaxation time for 
this adjustment may readily be shown to be ppa2/,u, i.e. pp/pf times a2/v .  But a2/v 
is small compared with the time scale of the small eddies when the Reynolds number 
of the flow about a particle is small, as already noted; and so when pp/pf is of order 
unity, as it is for liquid suspending media, the response to changes in the ambient 
vorticity is effectively instantaneous. Thus the particle rotates with the ambient 
fluid a t  all times. 

On the other hand, a rigid sphere cannot follow the straining motion in the ambient 
flow field, and a disturbance motion is generated in the fluid. This disturbance velocity 
is determined by the instantaneous value of the symmetric rate-of-strain tensor E, 
and is given (see Batchelor 1967, p. 249) by 

U @ ) ( X ) = X . E .  ( --I-- ;: ::( I--  ;:) xx 1. 
The complete expression for the fluid velocity in the neighbourhood of the particle, 

relative to the velocity of the particle centre, is thus 

U(X) = - V + U(T) + SZ.  x +x. E + u@), (2.4) 

where the two disturbance flow fields associated with the translational motion of the 
particle and the ambient extensional motion are given by (2.1) and (2.3) respectively. 

If the PBclet number of the fluid motion about the particle is large, as we have 
assumed, the variations in concentration of the diffusible material occur mainly within 
a thin layer adjoining the particle surface. We are consequently interested in the 
form taken by the expression (2.4) at values of r such that r - a < a, viz. 

u(x) NN -2; 3 5  V .  (I - 11) +(a+ ()a. 1 + 551. E .  (I -11) + O(cz), 

where 5 = r - a  and 1 = x / r .  The rate of transfer from the particle surface must now be 
determined by solving equation ( 1 . 1 )  for C within the concentration boundary layer, 
with the fluid velocity u given by (2.5). The parameters V, E and SZ are all stationary 
random functions of time, with statistical properties which will be considered later. 
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3. The partial suppression of transfer by particle rotation 
The mechanism by which convection greatly increases the transfer rate a t  large 

P6clet numbers is evident: fluid elements adjoining the particle surface receive solute 
material by diffusion from the particle and move round the surface towards some 
stagnation point where they move away from the surface, their place being taken by 
other fluid elements which come near to the surface a t  another stagnation point. It is 
essential to this process that fluid elements come near to the particle surface, remain 
near to it for a time, and then move away. If fluid elements moved round the particle in 
closed paths the effect of convection would be much weaker; and if all fluid elements 
in the neighbourhood of a particle moved in closed paths the Nusselt number would 
tend to a constant, as P + co, of the same order of magnitude as in the case of pure 
diffusion. Now it was shown in the previous study of transfer from a particle in a 
steady linear ambient velocity field (Batchelor 1979) that, when the ambient vorticity 
is non-zero, the paths of fluid elements near the particle surface are nearly closed, 
being slightly irregular helices of very small pitch, and that there is a corresponding 
suppression of the convective transfer associated with some of the components of the 
ambient rate-of-strain tensor. The ambient straining motion can always be decomposed 
into an axisymmetric straining with the axis of symmetry in the direction of the ambient 
vorticity and another straining motion with zero rate of extension in the direction of 
the ambient vorticity; and only the former causes fluid elements to approach the 
particle and later move away from it, with a correspondingly large contribution to 
the transfer rate of order H. It is not difficult to see by similar arguments that, if 
the ambient flow field is a super-position of a steady uniform stream and a steady 
rigid-body rotation, only the component of the stream velocity in the direction of the 
ambient vorticity leads to the paths of fluid elements being open and to a transfer rate 
of order Pf. 

It is important now to enquire whether there is a similar partial suppression of 
convective transfer due to the existence of ambient vorticity in the present case in 
which the ambient flow parameters V, E and SZ all vary with time. To this end we 
inspect the form taken by the fluid velocity near the particle surface when the tensors 
1, V, E and G? are expressed in terms of components in a Cartesian co-ordinate system 
with the x, axis parallel to the ambient vorticity and the x1 axis in an arbitrary ortho- 
gonal direction. With the further introduction of spherical polar co-ordinates r ,  6 ,  4 
such that 6 = 0 in the direction of the ambient vorticity and 8 = +T, q5 = 0 in the 
direction of the x1 axis, we find from (2.5) 

uo = (u, cos 4 + u2 sin 4) cos 6 - u, sin 6 

3 6  = - - {V, sin 6 - (V, cos q4 + V, sin 4) cos 6} 
2 a  

+ 5[{ - 9E3, sin 28 + sin 26 (Ell cos 24 - E,,cos 2 4  + ZE,, sin 2 4 )  

+ cos 26(E,, cos q5 + E,, sin $)}, (3.1) 
u$ = u2 cos 4 - u1 sin q5 

+ El, sin 8 cos 24 + cos 8 (E23 cos 4 - E,, sin $)I, (3.2) 



Mass transfer from particles in turbulent JEuid 615 

where R( = 4 1 0 1 )  is the angular speed of rotation of the particle and the ambient 
fluid about the x, axis. The component u, (which is of order t2) may be found from the 
mass-conservation relation 

a(u, sin 8 )  au, 
(3.3) 

At points within the concentration boundary layer, where [ / a  < 1, the fluid velocity 
is a uniform azimuthal rotation with a superimposed small fluctuation. The mass 
transfer will be determined, to leading order in P, by the net drift of fluid elements in 
the polar direction, because this drift motion carries solute round the particle surface 
and eventually away from the surface a t  either the equator or one of the poles (depend- 
ing on the sense of the drift). In the case of a steady ambient flow field investigated in 
the previous paper, this poleward drift was obtained by averaging u, over one rotation 
of afluid element about the x3 axis; and none of the terms in (3.1) which are 
sinusoidal in q5 or 24 survived this averaging. I n  the present case 6, Eii and R 
are functions of time t ,  and fluctuate over a time-scale Q-l, so the net drift of a material 
fluid element must be determined by replacing #J by 4 - Rt in (3.1) and averaging over 
a time long compared with R-I. But the average of terms like Ksin($-Rt) and 
Eij  sin ( $ - a t )  over a long time is zero when K,  Eij  and R are stationary random 
functions oft. It follows that the average poleward velocity of a material fluid element 
near the particle surface is 

- 3 c  - (V,) sin 6 - J4k< (E33) sin 28, 
2 a  (3.4) 

where the angle brackets denote an average over a time long compared with Q-l. 

It appears therefore that, relative to  the particle surface, the mean motion of fluid 
elements in the concentration boundary layer is a poleward drift which is exactly the 
same as if the particle were stationary and immersed in a steady ambient flow consist- 
ing of a uniform stream with velocity -V, in the direction of the x, axis (i.e. with 
velocity - w . Vw/w2) and a pure straining motion with symmetry about the x, axis 
and rate of extension E,,( = w .  E . w/w2) in the direction of that  axis. All other 
components of V and E simply cause oscillations in the motion of a fluid element with 
zero mean. 

The argument to  show that only these components V, and E,, cause the mass 
transfer rate to be of order Pf when P & 1 is now similar to  that given in the previous 
paper for the case of a steady ambient velocity distribution. For the purposes of this 
argument we introduce axes which rotate with the particle and the ambient fluid. 
The new velocity components Eo and E, are obtained from (3.1) and (3.2) by replacing 
q5 by q5 - Rt and by deleting the second term on the right-hand side of (3.2).  We write 

c = (C)+c’, :: = (::)+3, 
where the angle brackets again denote an average over a time long compared with 
Q-1, (&} is given by (3.4), (Z,) is zero, and C’ and have zero mean. NOW the 
boundary-layer form of the equation for C is 

ac d a2c - + u . v c  = K-  
at a p ’  (3.5) 
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and taking a mean of all terms in this equation gives 

The corresponding equation for the concentration fluctuation C‘ is found by subtract- 
ing (3.6) from (3.5) to be 

ac. + (5) .  VC’ + 6’. VC’ - (81. VC’) -K- a2c‘ = - u’. * V(C}. 
at at? (3.7) 

We propose to show that the solution of this equation satisfying the boundary 
conditions 

C’= 0 a t  5 = 0 (where C = C,), 

C‘+O as [-+m (where C -+ Co), 

is such tha t  IC‘/(Cl -Co)\ < 1. Since C’ vanishes outside the concentration boundary 
layer, the appropriate normal position variable in (3.7) is </a, where 6 is a measure of 
the thickness of the boundary layer (and S/a = O(P-*)). We therefore write (3.7) as 

~ac l  1 * * * a2 I a2c‘ 5’ .  V(C) 
E F  E 6 2  P a ( t / s ) 2  

, (3.8) E 
+- ((u}. VC’ +u’ . VC’ - (u‘. VC’)) -- -~ = - 

where T = Rt, E is a measure of the rate of strain in the boundary layer (so that gE is 
a measure of the fluid velocity relative to the particle surface), and P = a 2 E / ~ .  Now 
(8) .  VC‘/E and 6’. VC‘/E are both of order C‘6/a at points within the boundary layer, 
showing that when P 9 1 the first term on the left-hand side of (3.8) is dominant (pro- 
vided that R / E  is not small) and that (3.8) reduces approximately to 

(3.9) 

* 
The integration with respect to r can be carried out explicitly (since u’ is sinusoidal 
in T), giving C’ in terms of (0, but it is sufficient to note that C’/(C, - C,) is small, and 
of order P - f .  

Thus to leading order in P the concentration and its time-mean are equal and satisfy 
the eauation 

(3.10) 

obtained by dropping the term containing C‘ in (3.6).  The velocity components in this 
equation are given by 

(us> * = - 3 5  - (5) sin t9 - V t ( E 3 3 )  sin 20, (3.11) 

with (&) following from the starred and averaged version of (3.3) (with (&) = 0). 
It appears therefore that no leading order in P the mean concentration, and so also 
the mean rate of transfer from the particle, is the same as in the case of a stationary 
spherical rigid particle immersed in ambient flow consisting of a uniform stream with 
steady velocity - (V,) in the direction of the x3 axis and a steady pure straining motion 
which is axisymmetric about the x3 axis and has rate of extension (E33) in the direction 

2 a  
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of that axis. The rotation of the particle and the ambient fluid has the effect of suppress- 
ing the convective transport due to all components of the streaming and straining 
ambient motions except V, and E,, and also that due to fluctuations in these two 
quantities. 

4. The formal expression for the mean transfer rate 
An explicit expression for the mean rate of transfer from the surface of the particle 

may now be obtained from the above prescription by using results available for 
steady ambient flow with axial symmetry and described in the previous paper 
(Batchelor 1979). It may be shown, by the method developed by Levich (1962) for 
cases of steady flow over stationary particle surfaces with large PBclet number and 
large Prandtl (or Schmidt) number, that the rate of mass transfer from the part of the 
surface of a spherical particle between the polar angles 8 = 8, and 6' = 8, bounding a 
region of one-signed tangential stress is 

where p F ( 8 )  is the tangential stress in the polar direction at  the particle surface. 

have 
In the case of the steady axisymmetric ambient flow field represented by (3.1 1) ,  we 

F(8) = ~ ~ s i n 8 - ~ ( E 3 , } s i n 2 8 .  2 a  

The tangential stress is one-signed between 8 = 0 and 8 = n if 1/31 ,< 1, where 

so the rate of transfer across the whole particle surface is given in this case by (4.1) 
with 8, = 0, 8, = n. On the other hand, if 1/31 > 1 the tangential stress changes sign 
a t  6 = cos-1/3-l and the total transfer rate is the sum of two expressions like (4.1) 
in one of which 8, = 0, 8, = cos-l/3-l and in the other of which el = cos-l /3-l,e2 = n. 
The total transfer rate is evidently a function of /3, and may be written conveniently 
as 

(4.3) 

where L is a dimensionless function of /3 to be found by evaluating numerically integrals 
like the one in (4.1).  It was pointed out in the previous paper that the known values of 
L for 1/31 = 0, 1 and 00 suggest a range of variation of L of no more than 14 per cent. 
We shall be concerned especially with the particular case (I:} = 0, corresponding to 
1/31 + 00, for which L = 1.225 and 

N = 0*968( a21(EdI ) ' , (4.4) 

which is the result for steady axisymmetric ambient pure straining motion found 
first by Gupalo & Ryazantzev (1972). A t  the other extreme, 1/31 = 0, the result is 
L = 1.351 and 

(4.5) N = 0.625 i7) aI(W + , 

as found first by Levich (1962). 
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Further progress with the determination of the mean transfer rate for a particle 
suspended in turbulent fluid thus requires an investigation of the values of (V,) and 
(E,,). These mean values depend on the properties of the turbulence and, in the case 
of (V,), on the excess density of the particle. The z3 axis, it will be recalled, is in the 
direction of the instantaneous ambient vorticity, and since these particular axes 
have served their purpose we now change to the more general notation 

V . O  O.E.O 
Y - - ,  = V, say, and E,, = - =E, say. ,- I4 I 0 l 2  ) 

5. The value of (V,) 
The translational motion of the particle relative to the fluid results from the action 

of the external gravitational force on the excess density of the particle and the action 
of the effective force due to acceleration of the element of fluid in which the particle 
is immersed. Now the local vorticity in a turbulent motion is associated with the small 
eddies and the statistical distribution of the direction of the vorticity vector w is 
isotropic. It follows that the mean value of the component of the vertical fall velocity 
of the particle due to gravity in the direction of the local ambient vorticity is zero. The 
contribution to V due to acceleration of the fluid element containing the particle 
likewise has zero correlation with u, because the mean value (u . (DU/Dt))  would 
not otherwise have the statistical invariance to reflexion of the axes of reference that 
is usually found experimentally to accompany isotropy of the small-scale components 
of the turbulence. Hence 

(t} = 0. 

This result leads us to the conclusion that translational motion of the particle 
relative to the fluid - often referred to as particle ‘slip’ - has no effect on the mass 
transfer rate, to leading order in the (large) PQclet number. Bearing in mind the mech- 
anism of suppression of convective transfer by particle rotation, this conclusion is not 
implausible, but it nevertheless has some strange consequences. For instance, if 
particles are falling under gravity with speed V,, the effect of gentle turbulent 
stirring of the fluid is to decrease the average rate of mass transfer from a particle 
because the expression for N changes from (4.5) (in which (5) is replaced by the steady 
fall speed) with no stirring to (4.4) as soon as the r.m.s. vorticity in the stirring motion 
is of order U, P-*/u, where P = aUo/lc; of course further increase of the intensity 
of the straining motion leads to indefinite increase of the transfer rate according to 

As noted earlier the relative translational velocity of a particle is proportional to its 
excess density. The above conclusion is thus equivalent to the mean mass transfer rate 
being independent of the excess density ratio (pp -pf)/p,, to leading order in P. This 
is not inconsistent with the body of data obtained from stirred tanks by chemical 
engineers. After a careful survey of data on mass transfer from approximately 
spherical particles obtained in many laboratory investigations by themselves and pre- 
vious workers, all of which referred to large PQclet number although in some cases 
the particle Reynolds number was smaller than unity and in some cases larger, 
Levins & Glastonbury (1972) concluded that ‘the effect of particle density on the mass 
transfer coefficient is not generally large and can be ignored with little error in many 

(4.4). 
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cases ’. These authors also present data showing that the effect of quite a large density 
difference, as in the case of iron or copper particles in liquid, is to increase the mass 
transfer coefficient by a small but not negligible amount (see figure 17 of their paper). 
This might correspond to the density difference entering the theoretical expression 
for N in the departure from the asymptotic form a t  large P; the asymptotic form is of 
order P3, and the fact that our neglected concentration fluctuation C’/(C, - C,,) is of 
order P-4 suggests that the relative error in the expression for N is of order P-#, 
giving an absolute error which is independent of P and which might be numerically 
significant in certain cases. 

6 .  The value of (E,) 
The quantity (E,) is a parameter of the turbulent motion in which the particle is 

immersed, and is independent of the properties of the particle. It is determined in 
particular by the small-scale properties of the turbulence. Statistical isotropy is one 
of these properties, but this has no direct consequences for the value of (E,,,) since it is 
by definition invariant under rotation and reflexion of the axes of reference. (E,) 
plays a familiar and important role in theoretical studies of turbulence as the mean 
rate of extension of vortex lines. It may be shown that for turbulence which is locally 
homogeneous and isotropic (see Batchelor 1953) 

where S is minus the ‘ skewness factor’ of the rate of extension in a fixed direction 
(that is, minus the mean cube of this rate of extension divided by the # power of its 
mean square) and B is the mean rate of dissipation per unit mass of fluid. 

According to Kolmogoroff’s local equilibrium theory S is an absolute constant for 
turbulent motion a t  high Reynolds number, but the theory has been modified in 
recent years (see Monin & Yaglom 1975) and the current view is that it is a very 
slowly increasing function of the Reynolds number. The measurements of S made 
by a number of experimenters have been compared recently by Tavoularis, Bennett 
& Corrsin (1978). These measurements, which are reproduced here in figure 1,  show 
values of S ranging from 0.3 to 1.0 over a very wide range of Reynolds numbers of 
the turbulence. The Reynolds number referred to in figure 1, viz. R, ( =  ufA/v ,  where 
uf2  is the m.s. fluctuation in one velocity component - or the average of all three if 
they differ - and h is the dissipation length parameter defined by ( I ~ v u ’ ~ / B ) * ) ,  is 
the one commonly used by experimenters. Values of R, for laboratory stirred tanks 
will certainly be less than 104 and will often lie in the range 1 02-1 03.  A value of S near 
0.6 seems to be appropriate for the range of turbulence Reynolds numbers relevant 
here, and since we shall later need to take the &-power of S the consequences of some 
error are not very serious. 

With X chosen to be 0.60 we have 

(E,) = 0 . 1 8 ( ~ / ~ ) * .  (6.2) 

Another exact relation for isotropic turbulence is that the rate of extension in a fixed 
direction has zero mean and root mean square equal to 0*26(e/v)*. Comparison with 
(6.2) shows that the mean rate of extension in the direction of the local vortex line is 
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FIGURE 1. Measurements of the skewness factor of the rate of extension in a fixed direction in 
various turbulent flow systems and by various authors (from Tavoularis, Bennett & Corrsin 
1978, who give details of the sources of the measurements). S = -((a~/a~)~)/((au/a~)~)~ 
and R, = u'A/v. 

quite close in magnitude to the r.m.s. rate of extension in a fixed direction. The reason 
for this is that, effects of viscosity aside, the direction of the vortex line is always being 
turned towards the direction in which the rate of extension is greatest, so that the 
rate of extension in the direction of the local vortex line is a biased sample of rates of 
extension with a preference for large positive values. 

7. The rate of mass transfer from particles 

for (V,} and { E J .  Since (V,) = 0, the relation (4.4) is applicable, whence 
We may return now to the expression (4.3) for N and substitute the above results 

N = 0.55 - , (:;:)+ 
This expression for the mean rate of mass transfer from a spherical particle in fluid 
in statistically steady (but not necessarily homogenous) turbulent motion is asymp- 
totically exact, for large values of the PQclet number a 2 d / K d ,  aside from the small 
error involved in the use of the empirical constant value of S. The absence of any 
undetermined constants from (7.  I )  is unusual for a theoretical relation representing 
one of the effects of turbulent motion. 

Experiments to test (7.1) directly have not been made, but some comparison with 
data is possible. A number of empirical relations between the average transfer rate 
and parameters relevant to turbulent stirring of a suspension of particles have been 
put forward in the chemical engineering literature. It has been found in particular 
that the power input due to the stirring is the most relevant dynamic factor. One of the 
most extensive add systematic sets of observations has been made by Levins & Glaston- 
bury (1972). They found that 357 experimental results for the transfer from effectively 
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spherical particles were ‘correlated’ by a relation which can be 

where D, is the diameter of the stirring device and DT is the diameter of the con- 
taining tank. I n  ( 7 . 2 )  &is the total power input divided by the mass of fluid in the tank 
whereas in ( 7 . 1 )  B denotes the time average of the local dissipation rate sampled by a 
moving particle. The turbulence in a stirred tank is not homogeneous, and if a particle 
does not sample uniformly all parts of the tank B and t might differ a little. The 
appearance of the parameters D, and D ,  in (7 .2)  may be a consequence of the non- 
uniformity of the sampling of different parts of the tank being a function of D,/DT. 
However, (D,/D,)0.17 was not different from unity by more than 2 0  per cent in any 
one of the experiments concerned and can be ignored in a broad comparison of (7 .2)  
with theory. The particle Pkclet number a$&/~v* was large in all these experiments. The 
particle Reynolds number a28/v* varied from about 0 - 0 6  to 120, and so did not always 
have the small value assumed in our theory. The agreement between the theory and 
the empirical relation is nevertheless fair over the whole of the range covered by the 
experiments. 

I n  order to be able to compare their results with those of some previous investigators, 
Levins & Glastonbury also obtained from their data the following correlation, which 
assumes that  N - 1 a ~ - f  and ignores any dependence on D,/D,: 

The multiplying constant in ( 7 . 3 )  is a little smaller than that in ( 7 . 1 )  and the power of 
the Reynolds number a2z$/v* in ( 7 . 3 )  is a little larger than that in (7 .1) .  These two 
differences partially cancel, and they do so exactly (ignoring now any difference 
between B and 2) when u 2 d / v *  = 16,  which lies within the range of values covered in 
the experiments. Levins & Glastonbury noted that ( 7 . 3 )  agrees reasonably well with 
the earlier observations of Harriott (1962) ,  which also referred to large PQclet num- 
bers and a range of Reynolds numbers, some smaller than unity and some larger. 
Figure 2 shows the theoretical relation (7 .1)  (with the small difference between N and 
N - 1 ignored), the empirical relation (7 .3)  that  represents Levins & Glastonbury’s 
data, and points representing Harriott’s data (as reproduced by Levins & Glastonbury 
in their figure 16) ; B and 8 have here been regarded as equal. The agreement of (7 .1)  
with Harriott’s data is a little better than with Levins & Glastonbury’s empirical 
relation, and is as close as the scatter of the data allows. 

The comparison with data in figure 2 suggests that  the formula (7 .1)  for the transfer 
rate is valid a t  values of a2e&/v* as large as lo2. This calls for some explanation, since 
the theoretical relation is based on the formal assumption of small Reynolds number 
of the flow around a particle. It should first be noted, however, that a more significant 
choice of the Reynolds number of the extensional flow that is responsible for the mass 
transfer is a2(E,)/v, which is smaller than a2e*/ve by a factor 0.18. 

The assumption of small Reynolds number of the flow around a particle was used 
in two different ways in the foregoing theory. Firstly, it allowed us to calculate the 
velocity distribution from the Stokes equations. It was remarked in the introduction 
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FIGURE 2. The Nusselt number N as a function of the particle Reynolds number azsi/v).  The 
full line is the empirical relation (7.3) found by Levins & Glastonbury (1972) to fit their own 
data. The points represent data obtained by Harriott (1962). The broken line is the theoretical 
relation (7.1). 
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that the distribution of stress over the surface of a particle (which is the only relevant 
aspect of the flow field) is unlikely to depart significantly from that found from the 
Stokes equations until the Reynolds number exceeds unity, We know now that the 
type of flow around the particle that is relevant is that due to a particle in a linear 
ambient velocity distribution, rather than that due to translational motion of the 
particle through the fluid, and this strengthens the expectation of insensitivity of the 
calculated stress distribution to the particle Reynolds number (essentially because 
the distortion of the streamlines due to the presence of the sphere is less in a pure 
straining motion). Secondly, the assumption of small Reynolds number allowed us to 
regard the ambient velocity gradient as uniform over the region occupied by a particle. 
It is known from observations of turbulent flow that the wavelength, in a Fourier 
analysis of the velocity distribution, at  which the maximum contribution to the mean- 
square velocity gradient occurs is approximately 40( v3/e)* (corresponding to a wave- 
number 0.15(e/v3)*; and so, when a 2 d / d  = lo2, the particle radius is about 
one-quarter of this wavelength. However this is not seriously in conflict with the 
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assumption of a uniform ambient velocity gradient over the region occupied by a par- 
ticle because virtually the whole mean-square velocity gradient is contributed by 
Fourier components with wavelengths greater than 40( v3/e)& (the velocity-gradient 
spectral density increases as the one-third power of the wavenumber through- 
out the inertial sub-range, and then falls off to zero sharply a t  wavenumbers 
above 0. 15(e/v3)a). 

It is thus not surprising that the theory remains fairly accurate a t  values of a2e* /d  
up to  about lo2. The small number of points in figure 2 representing Harriott’s measure- 
ments a t  values of a2d/v4 above lo2 suggest that the transfer rate then takes larger 
values than those given by the theoretical relation (7 .1) .  
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